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We consider the nearest-neighbor Ising model in thermal equilibrium on a 
network with no required regularity or symmetry properties. Both coupling 
strengths and external fields are site-dependent. The objective is to describe this 
system in terms of a free energy magnetization functional whose conjugate 
variables are the external fields. For simply connected networks, this inverse 
problem has a local structure. On generalizing to loops, the local structure 
remains if the description is expanded in an overcomplete fashion to include a 
collective amplitude with respect to which the free energy is stationary. For 
more complex connectivity, a superbond representation is developed in terms of 
which the system can be described by a combined auxiliary set of branch and 
node collective variables. 

KEY WORDS: Inhomogeneous lsing model; free-energy functional; collective 
modes. 

1. INTRODUCTION 

T h e  class ical  I s ing  m o d e l  o n  a la t t ice  b o t h  m o d e l s  a va r i e ty  of  phys ica l  

s i t u a t i o n s  and ,  in v a r i o u s  guises,  r e p r e s e n t s  a very  b r o a d  class  of  

e q u i l i b r i u m  sys tems ,  d i sc re te  a n d  c o n t i n u o u s ,  c lass ical  a n d  q u a n t u m .  F o r  

o b v i o u s  r ea sons ,  i n c r e a s i n g  a t t e n t i o n  ha s  been  pa id  to the  spa t i a l  s t r u c t u r e  

of  such  mode l s .  A p r o t o t y p i c a l  f o r m a t  is t h a t  of  the  "prof i l e  e q u a t i o n , "  the  

r e l a t i o n  b e t w e e n  a n  app l i ed  p o t e n t i a l  field { - h x }  in un i t s  of  k T  a n d  the  

r e su l t i ng  m a g n e t i z a t i o n  field { m , } .  T h i s  r e l a t i o n s h i p  no t  on ly  c o r r e s p o n d s  
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to typical questions that one would ask, but can also be used to obtain the 
full multisite correlation structure of the system. The simplest spatial 
behavior is that of strict locality, in which m.,. =f,.(h.,.) depends only upon 
the potential at the site in question; this can only hold if the sites are non- 
interacting. We will in fact restrict our attention to pair interactions which 
are as local as they can be: only nearest neighbors interact--but of course 
this is no restriction in the absence of imposed connection topology, since 
any interaction can be associated with a connection and thereby become 
nearest neighbor. 

When interactions are only nearest neighbor, the concept of locality 
should certainly be extended to nearest neighbor as well, i.e., a relation of 
the form m.,.=f,(h,., {h>.}) where (y ,  x )  (read: y is a nearest neighbor of 
x) would be regarded as local. Although this particular form of locality 
does not in fact occur, the corresponding inverse profile has been 
shown (I-3) to take on a local form 

hx=f,.(m,., {my[ ( y , x ) } )  (l.1) 

for any simply connected lattice. The inverse profile form is particularly 
appropriate in the vicinity of thermodynamic singularities, where the { m.,. } 
depend sensitively upon the values of the {h,-}, but not vice versa, and has 
become the norm in continuous fluid approximations. But it has the addi- 
tional advantage, as pointed out in refs. 1-3, of great simplicity for tree 
structures, e.g., Bethe lattices, which are prototypical reference systems for 
many approximation methods. The real interest, and difficulty, arises when 
there are interaction loops. In part, the change is deceptively simple (2"4'6): 
each channel, i.e., sequence of vertices of coordination number two, has 
associated with it a collective amplitude, say C~ for channel ct, so that for 
x in this channel, with neighbors x+, x , 

hx = f,.(m.,./C~, m,.+ /C~,, m.,.- /C~,) (1.2) 

One can say that locality is maintained, but there is also a "hidden" 
parameter C,. For a site A at a junction of channels, i.e., one whose coor- 
dination is greater than two, the situation is not so simple. A number of 
cases have been solved, (5" 6) exhibiting the common structure 

hA=fA(mA, {m.,. I ( y , A ) } ,  {C,}) (1.3) 

where {Ci} is an expanded set of amplitudes, associated both with 
channels and interchannel junctions. 

The aim of this paper is to develop a systematic approach for analyz- 
ing multiconnected Ising networks. For this purpose, we will make very 
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explicit the nature of the collective amplitudes that have to be appended to 
maintain the nominally local form of (I.3). There will be an important by- 
product of this development, in the following context: the fields {h.,.} and 
magnetizations {m,.} are conjugate sets of variables in the sense that 

Oh.,./Om.,. = Oh.,./dm,. (1.4) 

a consequence of the relation Om,./Oh:.= -Ozl2/OhxOh,.= Om.,./Oh~, 
where 12 is the canonical thermodynamic potential of the lattice, i.e., 
s = - 1//~ In ~l-,-I exp -/~O{a,.}, where �9 is the total energy of the lattice. 
It follows that there is a free energy, recognized as the Legendre transform 
F= 1-2 + Z m.,.hx, such that 

0 
h, = P{m,.} I1.5) 

for all x. Now by inspection, the profile equations (1.2), 1.3) also take the 
form 

h,.= 0-~.,.F'{m,., ci} c (1.6) 

for suitable F', as if one had an expanded space of magnetizations and 
collective amplitudes. It is not hard to establish the general result 141 that 
there must then exist a function A{Ci} of the collective amplitudes alone 
with the property that if 

F{m.,., C,} = F'{m:., C,} + A { C~} 

then 

a } c  h.,-= 0--~x F{m,., Ci 

0 c,}. 
(1.7) 

as well as F{rn,., C,{m.,.}} = F{m.,.} when the explicit form of the {C,} is 
inserted. In other words, we are indeed in an extended space, with the 
dependence of the {C~} on the {m.,,} resulting from the vanishing of the 
conjugates to the C~. The problem of finding LJ{C~}, which has been non- 
trivial, is greatly simplified in the formulation to be described. 
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2. A R T I C U L A T I O N  POINT R E D U C T I O N  

We will of course deal with connected networks. But they may have 
articulation points, vertices whose excision disconnects the lattice. The 
disconnected pieces created in this fashion, with articulation point vertices 
reinserted, may be regarded as basic components of the lattice, and we 
might anticipate that the profile relations and free energy of the full lattice 
would be expressible in terms of those of the components. Indeed, this will 
serve as a leading level of reduction and amalgamation for the purpose of 
organizing the analytic structure of the lattice. 

Our first objective then is to see how free energies combine [see (2.8)] 
when a set of sublattices is combined via contact at single vertices. To start, 
suppose the lattice L has an articulation point x which decomposes L into 
sublattices A and B (Fig. 1): 

A w B = L ,  A . B = x  (2.1) 

We will use the shorthand h A for {h:., y ~  A }. Then the partition function 
Z L for L can be decomposed, in obvious notation, into partition function 
fragments (hereafter, we choose units so that fl = 1): 

Zt(h c) = ~ Z'4(h A -", a) e/':Zn(h B ", a) 
a 

It follows that 

1 +m.,.= (1 +_a,.) =2Z4(h A- ' ,  +)e+-h'Zn(h B-x, +_)/ZL(h L) 

(2.2) 

and hence that 

. . - . . { .  . I)..2 e"~- \ ~ ]  \ZA(h A -.,., + ) Zn(h n- x, + (2.3) 

X 

L 

Fig. 1. Network with articulation point. 
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We can now use (2.3) to perform a partial Legendre transform to replace 
h.,. by m.,.: At` ........ (ht`-", rex)= - I n  Zt`(ht`)+h,.m.,., or 

At` ....... (h L ", m,.)= - - 1  + m" i n 2  " 7 1  +m,. + ~ 1  -m, .  In 1 -m~2 " 

1 - m , .  )) - ( ~ l n Z a ( h  A-'', + ) + - - - ~ i n Z A ( h  A -,',- 

1 - m,. )) - ( ~ l n Z e ( h  B -", + ) + - - - - ~ l n Z B ( h  B -,',- 

(2.4) 

The general partial transform At`"~t(h t`, m M) interpolates between grand 
potential and free energy in the sense that At` '~ L, ~)=s while 
Ao. M(~,  m M) = FM(mM). 

By successively setting A - x =  ~ and B - x =  (Z5 in (2.4) and sub- 
tracting from (2.4), we have the basic reduction formula 

A t` ........ (h  L -  x, m x )  = A A ....... (h  A -", m,.) + A n ........ (h a - ' ,  m,.) 

( 2 1  ---=--= _---z--= l+m, .  1 -m~ ~ )  - rn" In 2 +  2 In (2.5) 

In precisely the same way, if q.,. sublattices meet at x, we find 

qr 
A L ........ (h L-x, m.,.)= ~ A A'- ....... (h A'- ' ,  m.,.) 

j = l  

I +rn,. 1 --m,. -- 
- (q.,. - l ,  ( ~  In - - - - - -~  + - - - - - -~  In ~ -~--s ) 

(2.6) 

If }'e A j - -x ,  then applying O/dh.,. to (2.6) leads at once to 

m~(h'-", m,.)= A, A,-,. �9 my (h , m,.) (2.7) 

where the superscript in m" means with respect to the lattice L. From (2.6) 
and (2.7), we can then Legendre-transform to replace all of the {hy} by 
{ my }, obtaining 

FL(mL) = ~ FA'(m'4,)-- (q.,. -- 1) (1 2m" " ln - - -~+- -~ l+m"  l--m,, ln_.~)l-m,A 
j = l  

(2.8) 

822/77/1-2-29 
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or since the last expression in (2.8) is recognized as the one-site free energy, 
simply as 

q~ 

_,eC(mL) = ~ FA'(m A') -- (q.,. -- 1 ) F"(m.,.) (2.9) 
j = l  

Finally, if the complete set of articulation points is designated by {x~} and 
the complete set of resulting components by {L~,}, we have 

F L ( ' n L )  = Z FL~'(mL;') -- ~. (q-,'.- 1 ) F '(m., .  ) (2.10) 

E x a m p l e  1. A simply connected lattice (Cayley tree, Bethe lattice,...) 
also has the property that every  nonboundary vertex is an articulation 
point. The corresponding components are all nearest-neighbor pairs, so 
only FI"'Y)(m,., m,) for nearest neighbors (x,  y )  need be computed, and 
(2.10) then reduces to 

FC(mL)=�89 ~ [ f f ' x . . " l ( m , . , m y ) - F " ( m , . ) - F . " ( m , . ) ] + ~ f f * ( m . , . )  (2.11) 
( x. y ) x 

For the basic two-site lattice, with Boltzmann weight exp(h, .a, .+h. , .a . , .+ 
J.,..,.a,.a.,.), it is trivial to find m,. = ( a , . )  and m,. = (a , . ) ,  from which 

1 + m., = e 2 1 ,  ' cosh(hy + J,-.,.) 
1 - m , .  cosh(h.,. - J,..,.) 

(2.12) 

and similarly for (1 + m, . ) / ( l  - m y ) .  These are readily solved to yield 

e +-2;''- -f-lx"+Sx-r (2.13) 
1 -T-m,. 

where 

t,~,. = m,. cosh 2J,~, .-  m.,. sinh 2J,.y 

s~.,. = s~.,. = 1 - m-,. + G,. 
(2.13) 

with a corresponding expression for h,.- After a certain amount  of algebra, 
one then finds that 

Z 2 = 8 cosh 2J.,.y- m,.m, ,  sinh 2J,..,. + s.,.,. (2.14) 
(1 - -  m2,.)( 1 - -  m ~ )  
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and so concludes that (to within an additive constant) 

U " '  " ' ( m , ,  m , )  - F " ( m , . )  - F-"(m.,.)  

= - I n  Z+h,m,.+. h " m " - ( ~  l n l + m ' ' "  " 2 

1 - m , .  1 - m , .  1 + m , .  ! + m , .  1 - m , .  1 m,.'~ 
+ - - - ~  In - - - ~  + - - - ~  In - - - ~  + - - ~  In - - 7  ) 

o r  

where 

P("'-"~(m.,., m,.). - F " ( m , . ) .  - F.-"(m,.). 

I ., tvv'k-S,.r 1 t.,..,.+s,.,. Fm,. ln  ' - --  " 
= ~  m,.in l+m., .  " l+l-~L. In u"-" 2 s"Y ] (2.15) 

u.,.y = u.,.,. = cosh 2J,.y - m.,m.,, sinh 2J.,..,. 

which completes the evaluation of (2.11). 
The construction of (2.15) can equally well proceed from the algebraic 

identities 

0 12 x .v  In x 

Om.,.ln(t-,,'+s,,')=(1 : 
�9 " - m,.)s, . . , ,  I - m?;. 

O sinh 2J.,..,. 
63m,. ln(t,.,. + s,.,.) = (2.16) 

�9 " " S x y  

6 3 t x y  /7"1 x 

Om,.ln(u"Y+S"Y)=(l-m~.)s.,.y l--m] 

and the immediate consequence that 

O I l.,..,. + s.,..,. F m ,. In l ,..,. + x.,?. 
0m,. m,. In 1 + m.,. �9 ~1 + m,, In u.,.,.. _2 s ""1 

= In t.,..,. + s.,:,. (2.17) 
I + m, .  

3. C H A N N E L  A M P L I T U D E S  

If the network is not simply connected, then even if every vertex is an 
articulation point, the disconnected pieces created by their excision need no 
longer contain just one interaction bond, but may, for example, consist of 
loops. And if not every vertex is an articulation po in t - -none  are on a 
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regular lattice--interconnected interaction loops are the norm. Non- 
etheless, some vestige of the locality of (2.11)--and the corresponding 
profile locality--will remain. 

Consider a constituent chain of vertices of coordination number 2, 
and focus on a neighboring pair (x,  y ) .  Each vertex contributes a multi- 
plicative weight 

wx(a.,.) = e h*'* (3.1) 

to the partition function, and hence to all expectations, whereas the pair 
contributes 

E.~.,.( a.,., a.,, ) = e ~'''''~'' (3.2) 

Now let us extend the pair x, y to the three-site sequence (see Fig. 2) and 
introduce normalized partition functions with gaps: 

Cx.,.(a.,., a.,.)= ~ p{a}/E.,..,.(ax, a.,.) (3.3a) 
{ a,, ,  I , -  ~ x y } / 

X.,.:(ax, a=)= Y" p{a}/EE.,.,.(a.,., a,.)w,,(a,,) E.,.:(a_,,, Gz)] (3.3b) 
{a,, I , o~x .y  z} / 

where p{a}  is the full normalized Boltzmann weight. Denoting the 2•  2 
matrix Ex.,,(a.,., a.,.) by Ex.,., and representing w.,.(a,.) as a diagonal matrix 
w,., we have at once, using the symmetry of E,..,. in its arguments and 
indices, 

Tr ~.,.,E.,,.,. = 1 

Tr a~x.,E.,.~ = m,- (3.4) 

Tr ~.~,.a E,..,. = m.,. 

where a is the diagonal matrix of multiplication by a. 

G 13' i f"  

x y z 

~xy ~yz 

Fig. 2. 

A 
xz  

Normalized partition functions with gaps. 
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Equations (3.4) are not enough to determine the four elements of ~,.y. 
However,  we also observe that 

~.,..,. = A ,.: E:.,. W,. (3.5a) 

(,.= = w.,E.,.,.A.,.: (3.5b) 

It follows that Det ~.,.y Det E.,..,. = Det ~.,.: Det E:y has a constant value along 
the chain; we denote this by 

K =  Det r Det E:.,. (3.6) 

Since Tr(~.,.yE,..,.)= 1 and all elements are nonnegative, the determinant 
Det(r = K is bounded from above by 1/4, allowing us to define C/> 0 
by 

CZ= 1 - 4 K  (3.7) 

Given C, the solution of (3.4) and (3.6) is immediate, and we find 

1 ( 1 +m,. crt,.,.(C)+s.,.,.(c)]~ 
r t v  ~ G - ' E - ' '  = 2 CE-t,.,.(C)+s.v(C)] " I - m , .  ) 

1 ( 1 +m,. C[-t.,..,.(C)+sy.,.(C)]~ 
G " -  E."-"G-" = 2 c[t,,.,.(C)+s.,..,.(O] 1-m.,. / 

(3.8) 

where 

s.,..,.(C)'-=t,.,.(C)'-+ ! -~_,~=t, . , . (C)- '+ 1 C-' 

(m."'](m.,"~sinh 2J,., ' U.v.(C ) = cosh 2J.,..,.- \ C ] \  C ] " 

(3.9) 

Clearly, t . , . , .(Cl{m})=t. , . , .({m/C}),s. , . . , .(Cl{m})=s., . . , .({m/C})in terms of 
the functions of (2.12), (2.15); we will need u,.,.(CI { m } ) =  U,..,.({m/C}) in a 
moment.  

Now, according to (3.5), we have w,.0,.,. = qy:W,., and so conclude that 

e-""[ty.,.(C) + sy.,.(C) ] = e" ' [  - t,..(C) + s.,.:(C)] 
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o r  

hy = �89 In [ty.,.(C) + s.,..,.(C)] + �89 ln[t,:(C) + sy:(C)] - �89 in(l - m.,2./C 2) 
(3.10) 

in which C enters only as a uniform multiplier: toxiC. The identities (2.16) 
then allow us to deduce at once that the explicitly my-dependent part of the 
free energy is given by 

1 1 
F.,. = ~ m.,. lnE,,.,.(C) + s.,..,-(C) 3 + $ ,,,. In [t.,..,.(C) + s,.,.(C)] 

1 
+ ~  my In [t.,.:(C) + s.,.__(C) ] + ~ m: In [t_.,.(C) + S:y(C)] 

C 
C In [u,..,.(C) + s,.,.(C)] - ~- In [u,._(C) + s,.:(C)] . . .  . . 

+~- In 

in the sense that 

(3.11) 

be found such that 

if 

then 

PTo-r({" }, C) = F({m }, C) + a (C)  

.F( {D? } )  = . F T o T (  { IT /} ,  C { , y / } )  

and O=8F-ro-r({m}, C)/8C 

(3.14) 

h.,, = ~ c (3.12) 

E x a m p l e  2. Suppose that the lattice is a polygon--a discrete 
ring--of N sites (Fig. 3). Then (3.12) will hold for each site if (with periodic 
boundary conditions: N +  1 = 1 ) 

F({ ,n} ,C)= .~- . ,  1 -  In 1 -  

1 ~ {m,. ln[t,. (C) +s,. (C)] @ 5  x +  I . , x +  I 

+ m,.+ 1 In [t.,. + i..,.(C) + s.,.+ l..,.(C)] 
- C l n [ u  ....... + l ( C ) + s  ...... +1(C)]}  (3.13) 

But how is C to be determined? We know (see Appendix A) that A(C) can 
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x,x+ 1 
e~ooo l l  

Fig. 3. Ring lattice. 

and so it is •(C) that supplies the implicit relationship for C. To find d(C),  
we first observe that because of the special form of (3.13), we can write 

�9 F T o T (  {DI }, C )  : C f ( { m / C } )  + A(C) (3.15) 

The "profile equation" for C then becomes 

o = ~FToT({", }, C)/OC 

{m/C}) + zl'(C) - ~.. h.,.m.,./C 

= o / c  + A ' ( c )  - A ( C ) / C  

Hence 

O = J ( C ) - C A ' ( C )  (3.16) 

a function of C alone. 
On the other hand, it is clear that 

....... +l(a,a')=(w.,.+lE,.+l,.,.+zw,.+2...w,. iE,. l..,.w.,.)(a',a)/Z (3.17) 

Since Det w.,. = 1; then 

~ ....... Oe E' 
) .v 
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from which 

K = (I~l Det E,....,.+,)/Z 2 (3.19) 

o r  

g2=~lnl ~ I - C  2 2 t ~ l n D e t E " " + l  (3.20) 
Y 

with obvious modification when C >  1. On comparing with (3.16), impos- 
ing the condition A(1)= - ~ , .  (In 2)/2 obtained by the J ....... + ~--* 0 limit of 
independent spins with F = ~ F " ( m , ) ,  we find at once 

1 + C  I + C  t - C  1 - C  
d(C) = ~ In T + - - ~ - -  l n - -  ~ 

1 
1 - C Z l n ( s i n h 2 J  ,. , , + , ) - ~ Z l n 2  (3.21) 

, 

y v 

The determination of zl, and hence implicitly of C, is complete. 

Example 3. By a cactus, we mean a network in which all non- 
boundary vertices are articulation points (Fig. 4). The components obtained 
by splitting at the vertices need not be links with two vertices, but may be 
any polygons, serving as supervertices of a generalized tree. The definition 
can be extended with no loss of malleability by replacing nonboundary 
vertices in the definition by vertices of nonboundary polygons. Now we can 
apply (2.10) together with (3.13), (3.14), (3.21). If the supervertex ~ has N~ 

Fig. 4. Typical cactus. 
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vertices and qx is the number of polygons intersecting at x, the incorpora- 
tion of channel amplitudes changes nothing in (2.10), and we have at once 

F = ~  C=[f=({m/C=})+zl=(C=)]-~,(q.,.-1)P"(m,) (3.22) 
~t x 

where f~ is given by (3.13), F"  by (2.8), and zi(C) by (3.21). 

4. S U P E R B O N D  REDUCTION 

An internal chain of bonds A, A + 1 ..... B is characterized by a com- 
mon collective amplitude C such that h,. is expressible in terms of m,./C, 
mx+_~/C at each interior site of the chain. Hence the partition function 
component 

B - - 1  B - I  

ZAB(ffA, f i B ) :  ~ U eh ..... 1--I e~'~J .... t,,, +. (4.1) 
{avl.~.'=A+l....,B-l} A + I  A 

can in principle be written explicitly in terms of aA,mA/C, 
mA + I/C ..... mB/C, an. If we represent this component as 

ZAn(aA, aB)=nAa exp(AhAaA + AhBaB+JABaAaB) (4.2) 

which we can always do, the chain has therefore been replaced, insofar as 
expectations are concerned, by a "superbond" JAB, together with "edge 
fields" AhA and AhB (Fig. 5). To determine the four parameters in (4.2), let 
us embed the chain in an otherwise arbitrary (periodic boundary) ring with 
collective amplitude C. We have seen that for this ring, 

F-ro-r({m},C)=Cf + -----~- In -~---- + -----~--- In -----~- 

1 - C  
2 ~ l n s i n h ( 2 J  ....... +t) (4.3) 

A A+I B-1 B 

Fig. 5. Isolated superbond. 
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so that, using 

(a/ac)[ cf( {m/c} ) ] =f({m/C})- S/'x({m/c}) m.Jc 

the "profile equat ion" (O/OC) F-roT( {m }, C) = 0 reads 

-- ln[u  ....... + I(C) + s,..,.+ 1(C)] In ~ =  In 1 - ., 

+ l n s i n h ( 2 J  ...... §  (4.4) 

On the other hand, with A + 1 ..... B -  1 replaced by the superbond,  we have 

- ( m~'~ . ...... + , l C ) + s  ...... + , I C )  
l n l  C =  ~ I n \ l - c 2  j - -  ~ in s inh(2J ...... +1) 

I + C  A .>.,-.> B ,~ - I .>.,->_. ~ 

- -  In uA, n(C) + sA, n(C) ( 4 . 5 )  
sinh(2JAB) 

and so conclude that 

In u A. B(C) + S A. B(C) 
sinh(2JA. B) 

= -  ~ In 1 -  ' + 
A + 1 ~<.x'~< B -  I A < . . v ~ B -  1 

in u ...... + t ( C ) + s  ..... + l (C)  
s inh(2J ....... +l)  

(4.6) 

This is of course an equat ion for JA, 8. Since 

u.~,,.(C)+ sx,.,,(C) 
- p.,.. ,,(C) 

sinh(2Jx, ,,) 

has the solution 

e4J~,."=[p ....... ( C ) + ( I + ~ - ~ ) ( I + ~ ) ]  

x [.~ ,,., + (l _~) (1-~)1 /  
/{[,.,,~,_(1 +~)(~_~)] 
xE~ ....... ,c,_ (, __~)(l +~)]} 

(4.7) 

(4.8) 
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JA. s is determined by 

e4J' 'alcl=[pA.B(f) 

. , . ,-  (, 

where 

p A . . / c l =  1-I " ....... + , l c l + s . . + , ( c ) / " f i '  2 

Continuing, we know that for the multisite chain, one has 

hA = �89 ln[tA. A - 1( C ) -[- S A ,  A - l(C) "] 

+ �89 t(C)]-- �89 --mA/C 2) 

whereas for the single link superbond, we require 

hA + AhA(C)= �89 ~(C)+sA.A_ ~(C)] 

+�89 �89 --m2/C2~A, , 

Hence, in more explicit notation, 

1 
AhA. n(m, C) = ~ In 

t A.e(C)+ SA.n(C) 

t A..4+ ~(C)+ SA.A+ j(C) 

and similarly 

1 
Ahz. A(m, C) = ~ In 

tn.A(C) + sn.A(C) 
t s .n_ l (C)+ss . s_~(C)  

Finally, it is clear that 

Det ZA. n = 
B 1 B I 

I-I Det( e~s' .... '~')= I ]  2sinh(2J ....... +l) 
A .4 

(4.9) 

(4.1o) 

(4.11) 

(4.12) 

(4.13) 
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but Det ZA, s = 2ha, s sinh 2JA. B, and so we have 

,/ nA, B(C)= 2sinh(2J ....... +l 2sinhJA. s(C 
\ A 

(4.14) 

Now that we have found ZA.S(aA, as), there is in principle no dif- 
ficulty in producing the full partition function. Numerically, it is simply 

Z(h,m,C)= ~ ( H e / )  I-I' ZA, n(aA,an) ..... (4.15) 
{a.4 I q.4 > 2} IA,  B)  

where H '  indicates that only one order of a pair is included, and that 
B~A.  But hA(m) is not known. One option is to use a mixed thermo- 
dynamic potential, as in (2.4), which is direct in the hA but inverse in 
{m, C}. However, if one wants a fully inverse free energy formulation, a 
simple device is that of regarding hA as a collective variable as well; 
consider 

F(H, m, C ) =  ~ h.(m, C ) m : +  ~ HAmA -- ln Z(H, m, C) 
~z lq :<~2}  IA I q.-f > 2} 

(4.16) 

a function of all m:, the H A,  and the CAB. From the definition of ZA. n, we 
know that 

Z(H, m, C)= ~ H eJ""~''""eEHA~AeZh:Im'c)#: 
< , , , >  

(4.17) 

and we readily find the variational properties of F(H, m, C). By direct 
computation, we have 

0F/0m: = tl :(m, C) + ~ Oh :. (m, C )~Ore .(m : , -  ( o  :, )H. m,  C )  

.7' 

OFIOmA = H a + ~ Oh:(m, C ) l a m A ( m : -  r ) . ,  m, c) 
r. 

oF~OH, = mA -- ( aA)n .  ,,,. C 

OF/OCAs = ~ Oh:(m, C)/OCAt~(m: -- (a . . )  H. ,1. C) 
z 

(4.18) 
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where the subscript H, m, C denotes an average over the kernel of (4.15). 
It is clear that imposing a F / S H  A = 0 is sufficient to enforce HA = hA. Thus 
the set (4.18) becomes 

h . - 0 F ( H ' m ' C )  . , h A - 0 F ( H ' m ' C )  . 

Ore. = h 8 m  A = h 

0 = O F ( H ' m ' C )  n ' 0 = 8 F ( H ' m ' C )  H 

OHA = h OCAn = h 

(4.19) 

and F(H, m, C)lH=h = F(m) as well. We thus have an explicit extended free 
energy functional for the lattice, but one that is structurally simple only if 
(unlike a regular grid) there are relatively few vertices of coordination 
number greater than 2. 

E x a m p l e  4. The basic multiconnected network consists of r parallel 
branches b~ between two vertices (Fig. 6). According to (4.2), (4.16) (but 
using ct to distinguish the various branches between A and B), 

F(h, m, C ) = ~  )-" h..(m, C : , ) m : + h A m A  +hBmB 

a A , ~r B 

(4.20) 

b l  

b r  

Fig. 6. M u l t i c o n n e c t e d  n e t w o r k ,  prototype. 
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or, in obvious notation, 

F(h, m, C) = h Am A + hsms + ~ I ~ h:(m, C~)m:- ln n~(m, C~) 1 
L z E b~ 

--lnla~,~,e(/"~+nhA(m'C))~e(hs+dlls(m'CDa'e'/(m'C)#~' ] (4.21) 

The profile equations follow at once. 

5. CONCLUDING REMARKS 

As we have shown, the remarkable locality of the nearest-neighbor 
Ising-model free energy for simply connected networks not only extends to 
simple loops when a collective amplitude is allowed for, but also extends 
to multiconnected networks. The price to be paid is that the fields at the 
"mesoscopic" nodes of the network are themselves treated as subsidiary 
collective variables. For such more complicated networks, the major task 
is that of computing 

Z(h,m,C)=I I-I' nAs(CAs) ] 
{A,s} 

{oA I qA > 2} B 

x I-I' exp[JA, s(m, C)aAtrn] 1 (5.1) 
{x,s} ) 

This is cquivalcnt to solving thc skclcton modcl whose only vcrticcs arc 
those of coordination number greater than two. 

But thc skclcton model has facets that arc significant. In particular, 
parallel supcrbonds may havc becn crcatcd in the proccss of constructing 
(5.1), and thcsc may bc combined in the fashion that was used for (4.21). 
Thcrc may thcn cxist chains of supcrbonds that havc thcir own collcctivc 
amplitudcs, and in this scrics--parallcl rcduction technique, a hicrarchy of 
collcctivc amplitudcs can bc produccd bcforc thc process grinds to a halt 
at an irrcduciblc skclcton. If this does not happcn bcforc the nctwork 
collapscs to triviality, one is working with a mcmbcr of the CHNC 
hierarchy of graphs, built rccursivcly from links by scrics and parallcl 
operations alonc. It would bc both intcrcsting and more than a bit valuable 
if thc complications of thc hicrarchical reduction could bc organizcd so 
that it docs not have to bc carricd out explicitly, usc bcing madc only of 



Free Energy for Non-Simply-Connected Lattices 439 

the fact that the network belongs to this class. Equation (2.11) illustrates 
this strategy for a much narrower class of networks. Work along these lines 
is now proceeding. 

A P P E N D I X  .4~ 

Suppose that the profile equation can be written in the form 

h,.=aF({m}, {C})/Om.,. (A1) 

where the C= are themselves independent functions of the {m,-}. If F{m} is 
the unknown but complex free energy that generates the profile, we will 
also have 

Hence 

h,. = aF{m }/am,. (A2) 

0 (A3) am~ (F({m}, {C{m}})-F{m})=~ OF({m}' {C})ac ,  
ac= am,. 

The independent {C:} can be enlarged to the full space of functions of 
{m,.} by appending the set {D#}; carrying out the operation ~.,. (Om,./OD#) 
on (A3), we have (a/aD~)(F({m{C, D}}, {C})-F{m{C, D}})=0. Hence 

F{m}=F({m},{C{m}})+A{C{m}} (A4) 

for some function A of the {C, } alone, with 

OF( {m }, { C})/OC= = - a ~ / a c ,  (A5) 

Furthermore, writing 

Fvov({m}, {C})=F({m}, {C})+ A{C} (A6) 

we have 

OFToT/C3rn.,. din,. + Z OFToT/OC:, dC, 

= ~, OF/Ore.,. dmx + Z OF/tOC, dC, + Z OA/c3C~ dC~ 

~/~TOT ~-FTOT =hx, =0 (A7) 
Om~ OC~ 

Using (A2) and ('A5), we see then that 
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